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SUMMARY 

The finite element method is applied to incompressible and statistically steady confined turbulent swirling 
flows. A velocity-pressure formulation is employed. The momentum and continuity equations are solved 
using a segregated algorithm. Two turbulence models, namely the standard k--E model and the algebraic 
stress model, are considered. It is shown that the algebraic stress model leads to significantly more accurate 
results in swirling flows compared to the k--E model. A novel way of implementing the algebraic stress model 
is presented in which the stresses are coupled to the Navier-Stokes equations in such a way that they ‘correct’ 
the effective viscosity hypothesis. This formulation seems to provide a convenient approach for finite 
elements. In deriving the discretization equations, a streamline-upwind/Petrov-Galerkin method is 
employed. Comparisons performed between various upwind schemes show that the numerical solution may 
be substantially affected by the particular upwind procedure used. The analysis is extended to the prediction 
of particle motion in turbulent swirling flow fields. Here the fluid turbulence is modelled adopting a 
stochastic approach. The influence of turbulence modelling on particle movement is investigated. 
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INTRODUCTION 

Turbulent swirling flows are encountered in many important engineering applications.’ We are 
particularly interested in flows in combustors and f ~ r n a c e s . ~ . ~  Here a swirl component is often 
imparted to the axial flow in order to achieve a stably burning flame or to influence the flame 
shape. Using standard finite difference codes,4 some difficulties are encountered in the simulation 
of such flows. First, geometrical details of swirl burners cannot always easily be captured by a 
finite difference grid. Secondly, the extreme skewness of the flow direction to  the orthogonal grid 
lines may produce excessive amounts of false diffusion using upwind or hybrid differencing. The 
finite element method, on the other hand, can handle completely unstructured grids. Thus solution 
domains of any shape can be conveniently discretized and particular features of the flow can 
effectively be resolved by local refinements. Further, the streamline-upwind procedures of finite 
 element^^'^ seem to provide convenient means of reducing the false diffusion. Therefore we expect 
some benefits from the application of the finite element method to turbulent swirling flows. This is 
the scope of the present investigation. 

In the present study the attention is focused on incompressible and statistically steady turbulent 
swirling flows. A primitive-variables formulation is preferred in the analysis. For the solution of 
the momentum and continuity equations, a segregated formulation is e m p l ~ y e d , ~  where a 
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discretization equation for pressure corrections is obtained directly from the discretized continuity 
equation, considering the velocity-pressure relationships established in the discretized 
momentum equations. 

Two-equation turbulence models' based on a turbulent viscosity hypothesis (especially the k--E 
model') are being almost exclusively employed by finite difference4 and finite element9-" codes. 
Although these models predict many kinds of flows successfully, their performance in flows with 
streamline curvature and rotation is often found to be insuff i~ient . '~- '~  It is generally argued that 
curvature and rotation effects produce a highly non-isotropic turbulence structure, which cannot 
adequately be described by two-equation turbulence models based on a turbulent viscosity 
hypothesis. Some authors have sought to improve the k--E model by modifying the source term of 
the dissipation equation or the turbulent viscosity c o n ~ t a n t . ' ~ - ' ~  Nevertheless, such modifica- 
tions often suffer from not possessing enough universality. In general, without considering the 
curvature and rotation effects on the individual turbulent stresses, a major improvement in 
turbulence modelling shall not be expected, an issue calling for higher-order turbulence closures. 

In the present study the algebraic stress model' is employed, which provides a principally more 
accurate turbulence model compared to the k--E model, without an excessive increase in 
computational effort. To the best of the author's knowledge, this paper demonstrates the first 
application of the full algebraic stress model in finite elements. This restricted use of the algebraic 
stress model is, in our opinion, partly due to the problems associated with the coupling of the 
turbulent stresses into the Navier-Stokes equations. In the present paper we propose a simple and, 
especially for finite element formulations, convenient way of implementing the algebraic stress 
model in which the stresses obtained from the algebraic stress equations are coupled with the 
Navier-Stokes equations in such a way that they 'correct' the effective viscosity hypothesis. 

Discretization equations are upwinded by a 'discontinuity-capturing' version of the streamline- 
upwind/Petrov-Galerkin method.6 In order to see the effect of different levels of false diffusion on 
the numerical solution, computations are also performed using alternative upwind facilities and 
results are compared. 

The investigation is extended to the prediction of particle motion in a turbulent swirling flow 
field. The influence of fluid turbulence on particle motion is modelled adopting a stochastic 
approach. Results are compared for alternative turbulence models. 

GOVERNING EQUATIONS 

For incompressible, statistically steady and axisymmetrical turbulent flows the Reynolds- 
averaged' momentum and continuity equations can be expressed as 

a -  l a  ~ 

ax r ar +-( -pu")+--( - rpu'u' ) ,  

- 1  - a -  i a  I 2  + -( - p u' u' ) + --( - r p u" ) - -( - p w ), 
ax r ar r 

aw -aw "> a ( a,) 1 a ( T) a w 
U-++-+- =- p- +-- r p -  --(iy- ax ar Y ax ax r ar ar r2 
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The pair correlations in equations (1H3), i.e. the terms -pu’, ,  - p u ” ,  -pw‘ , ,  -pu‘u’, -pu’w‘ 
and -pu’w’,  are the so-called Reynolds stresses, which must be specified by a convenient 
turbulence model. 

__ 

The k--E model 
The k--E turbulence model8 is based on a turbulent viscosity hypothesis. Here the Reynolds 

stresses are modelled in analogy to the viscous stresses by the following relations: 

~ aw 
p u’w‘ = p,-, ax ( 5 )  

In the k--E model the turbulent viscosity in (5) is given by 

For high Reynolds numbers 
form8 

pt = p CD P I E .  (6) 
the transport equations of k and E can be expressed in the general 

The term D ,  in (7) denotes the diffusive transport. In the standard k-& model this term is given by 

The source terms for k and E in (7) are given by 

s,= P(P-4 ,  (9) 
s, = c 1 pPEf L- c, p E 2 I E  (10) 

In equations (9) and (10) the term P represents the production of k and is defined by 

Substitution of (5) into (1 1) gives an expression for P in terms of turbulent viscosity, mean velocity 
gradients and turbulence kinetic energy. 

The algebraic stress model 

In the algebraic stress model, proposed by Rodi,” the local values of Reynolds stresses are not 
assumed to be proportional to the mean velocity gradients (5),  but are obtained directly by solving 
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algebraic equations which are derived from Reynolds stress transport equations under certain 
 assumption^.'^ For cylindrical-polar co-ordinates these algebraic Reynolds stress equations' 
can be expressed in matrix form as follows: 

a u .  a v .  v .  ' aw ' 

: ax : ax : ar : r .  

-Z j ar . ax . 
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Consistent with the algebraic stress model, a higher-order approximation for the diffusion of k and 
E can be obtained,16 which replaces (8) by 

Note that the solution of the transport equations (7) of k and E is still required to evaluate the 
algebraic stress equations (12). 

Particle motion 

Here it is assumed that the flow field remains unaltered by the particle movement. Thus a three- 
dimensional computation of particle trajectories can be performed using an independently 
computed two-dimensional axisymmetric flow field. Neglecting all external forces except the drag 
force, the equations of particle motion can be expressed in a Lagrangian reference frame as 

du,- u , - ( U + U ' )  _ _ -  - 
dt TPR 

du,- _ _  - 0 , - ( (v+u ' )  +L, w2 

dt TPR T P  

w,-(W+w') upwp dw,- - - -~ 
dt TPR rP 
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and 

where the particle relaxation time can be given as” 

70 1 

(16) 

The fluctuational velocities (15) are modelled, using a stochastic approach,18 as 

uI= qJ (ulz), u I =  qJ (P), w r  = qJ (Z) (18) 

where q denotes a normally distributed random variable. The RMS values of the fluctuational 
velocities (18) are provided by the turbulence model. Fluctuational values computed from (18) are 
assumed to prevail during the eddy lifetime, which is given byI8 

THE FINITE ELEMENT FORMULATION AND THE SOLUTION PROCEDURE 

Since the flows under consideration are highly convective, the finite element discretization 
equations are obtained by the streamline-upwind/Petrov-Galerkin method6 in order to stabilize 
the numerical solution while introducing a minimum amount of numerical diffusion. Here a 
‘discontinuity-capturing’ version6 of the method is preferred to suppress the oscillations, which 
may occur about sharp internal layers using the streamline-upwind/Petrov-Galerkin method. 
Bilinear-velocity/constant-pressure elements are used in the analysis. The turbulence kinetic 
energy and the dissipation rate are also linearly interpolated. For the Navier-Stokes equations, 
‘traction-free’ boundary conditions are specified at the outlet, whereas ‘zero-gradient’ boundary 
conditions are prescribed for the transport equations of k and E.  

The segregated formulation of the Navier-Stokes equations 

A segregated formulation is adopted for the solution of the momentum equations (lH3) and the 
continuity equation (4). This approach is analogous to the well known finite difference procedure 
SIMPLE.19 Details of the finite element formulation can be found in Reference 7. The method is 
based on the derivation of a discretization equation for pressure corrections p” directly from the 
discretized continuity equation, considering the velocity-pressure relationships in the discretized 
momentum equations. This equation reads 

The coefficients (aJ i  and (a,)i in (20) denote the ith diagonal elements of the system matrices for u 
and v respectively. The terms (b,Jij and (b,)ij represent the influence coefficients of thejth pressure 
node to ui and ui respectively. The velocities u* and U* are the velocities based on the incorrect 
pressure field p*. Corrections to the pressure field, which lead to a better satisfaction of the 
continuity equation, are obtained from (20). The velocities and pressures are subsequently 
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1 

The implementation of the algebraic stress model 

For each element the Reynolds stresses are obtained by solving the system of algebraic 
equations (12), where the velocity gradients and other terms in the coefficient matrix (12) are 
evaluated at element centres. These stresses must subsequently be substituted into the 
Navier-Stokes equations (1H3) in order to be able to solve them. This coupling of the 
aigebraically computed Reynolds stresses and the Navier-Stokes equations must be formulated 
carefully since it has important consequences for the numerical solution. The most straightfor- 
ward way would be to write the algebraically computed Reynolds stresses on the right-hand side 
of the Navier-Stokes equations as prescribed source terms, while on the left-hand side only the 
viscous stresses remain as diffusion terms. Considering a representative stress in the axial 
momentum equation (l), this formulation can be expressed as follows: 

. . .  - q 2 p g ) = 2 ( - p F ) +  ax ax . . . 

Nevertheless, this straightforward formulation is computationally inconvenient. Here the numer- 
ical solution is strongly prone to divergence owing to the very small diffusion terms on the left- 
hand side of (24) ( p  is the laminar viscosity), 

In finite difference codes2’ this problem is being dealt with as follows. By manipulating the 
algebraic stress equations (12), a formulation is arrived at wherein the gradient of a Reynolds stress 
appearing in the Navier-Stokes equations is expressed by a term having a ‘diffusive’ structure plus 
additional terms. The ‘diffusion-like’ term is transferred to the left-hand side, whereas the 
additional terms remain on the right-hand side as source terms. This formulation possesses much 
better numerical stability compared to the previous one (equation (24)) owing to the increased 
diffusion on the left-hand side. However, the application of this formulation” using the finite 
element method is not straightforward. The ‘diffusion-like’ terms obtained for different Reynolds 
stresses in this formulation all have different ‘diffusion coefficients’. Thus the resulting differential 
equations are analogous to transport equations of a medium with non-isotropic diffusion. This 
introduces further difficulties in applying upwind procedures. Finite element upwind procedures 
are all constructed for isotropic diffusion, i.e. for a scalar diffusion coefficient. In finite differences 
the upwind differencing can perhaps be more easily modified to take care of non-isotropic 
diffusion, since the orthogonal grid lines are parallel to co-ordinate directions. However, such a 
modification of the existing finite element upwind methods, e.g. streamline-upwinding procedures, 
to consider irregular meshes seems not to be very straightforward. Furthermore, this procedure2’ 
of coupling the Reynolds stresses with the Navier-Stokes equations produces very complicated 
and lengthy source terms2’, which is also an undesirable feature. 

In order to avoid the above difficulties, we propose here an alternative approach for the 
coupling of the Reynolds stresses with the Navier-Stokes equations. In this formulation, after 
writing the Reynolds stresses (which are to be computed by solving the algebraic stress equations) 
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on the right-hand side, we add to both sides the well known turbulent viscosity approximations 
(equations (5) and (6)) of the Reynolds stress terms. This can be conveniently explained with the 
help of equation (24). For the stress term considered in equation (24) we add to both sides of the 
equation the term 

using the conventional definition (6) of the turbulent viscosity. This results in 

corrective source term 

This procedure is applied for all stress terms in the differential equations. Thus, as can be seen from 
equation (25), we obtain diffusion terms on the left-hand side which are identical to the ones 
resulting from the conventional isotropic turbulent viscosity hypothesis (5). The non-isotropic 
effects are all buried in the ‘corrective’ source terms on the right-hand side. These ‘corrective’ 
source terms contain the differences between ‘algebraic stress’ (12) and ‘turbulent viscosity’ (5) 
approximations of the Reynolds stresses. In other words, in these source terms, only that portion 
of the algebraic Reynolds stresses are considered in which they differ from the isotropic turbulent 
viscosity hypothesis. Thus for flow regions where the turbulent viscosity hypothesis provides an 
accurate enough approximation and agrees well with the algebraic stress model, these corrective 
source terms vanish. For regions where the turbulent viscosity hypothesis starts to deviate from 
the algebraic stress model, they become ‘active’ and ‘correct’ the solution in the right direction. The 
implementation of the present formulation is quite easy. For a code employing the classical 
turbulent viscosity formulation (5),  the left-hand sides of the differential equations remain 
completely unaltered. One only needs to add the corrective source terms (25) to the right-hand 
sides, which also have a relatively simple structure. Please note that we are still applying the full 
algebraic stress model. The formulations (24) and (25) are identical and the turbulent viscosity (6) 
in the present formulation (25) is only introduced for computational convenience. The transport 
equations of k and E are also coupled with the algebraic Reynolds stresses using the corrective 
source term approach. No special difficulties are encountered in the computations performed 
using the present formulation. The convergence rate is also observed to be similar to that of the k--E 
model. 

The near-wall treatment 

Owing to the difficulties associated with the modelling of turbulent flow near solid boundaries, a 
wall-functions approach’ is adopted. Here it is assumed that the following equations hold within 
the wall layer: 

u +  ={  y +  for y +  < 11.6, 
(l/K)ln(Ey+) for y +  2 11.6, 

R= u;/cg2,  

B =  CA!4k3!2/~y. 

Thus boundary nodes can be placed not at the wall but at a distance from the wall, the boundary 
conditions being derived from (26H28). To evaluate (26)-(28), the wall shear stress must be known. 
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The present approach for the estimation of the wall shear stress was discussed in Reference 9. 
A possible extension of the recursive shear stress formulae’ for a wall element with irregular 
shape (Figure 1) is given below: 

for y l  < 11.6, 

In (29), Up denotes the wall-parallel component of the velocity vector. For inclined walls, Up must 
also replace u in (26). 

The computation of particle trajectories 

remain constant,” equations (15) can be integrated analytically to give 
Assuming sufficiently small time increments, in which the gas velocities and body force terms 

W p = W + W ’ -  T ~ R U ~ O W ~ ~ / Y ~ ~  + ( W p , - - - W ’ +  T P R U ~ O W ~ Q / ~ ~ O ) ~ X ~ (  - A t / T p R ) ,  

where the subscript 0 denotes the conditions at  beginning of the time increment. Instantaneous 
particle co-ordinates are obtained by a stepwise integration of equations (1 6). 

The solution procedure 

The important steps of the solution procedure can be summarized as follows. 

1. Guess initial fields for u, u, w, p ,  k ,  E and p,. 

/ 

Figure 1 .  An element near the wall 
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2. Compute Reynolds stresses from algebraic stress equations (12). 
3. Solve (1) for u. 
4. Solve (2) for u. 
5. Solve (20) for p" and compute the new pressure field from (23). 
6. Correct the velocity field according to (21), (22). 
7. Solve (3) for w. 
8. Solve (7) for k .  
9. Solve (7) for E.  

10. Update pl and wall boundary conditions ((6), (26H29)). 
11. Go to step 2 if convergence is not achieved. 
12. If required, compute particle trajectories ((15)-(19), (30)) using the converged solution of the 

The solution of the finite element discretization equations for each field variable is obtained by a 
direct solver using a band matrix storage mode. Underrelaxation is employed for u, u, w, k and E.  

pl is also underrelaxed. The standard k-E model can be recovered by omitting step 2 of the 
above procedure and setting the corrective source terms (25) equal to zero. 

flow field. 

RESULTS 

As a numerical example, a test casez1 of the International Flame Research Foundation (IFRF) is 
considered. Measurements were performed by an LDA technique. The flow geometry and the 
finite element mesh are shown in Figures 2 and 3 respectively. 

The swirl generator produces a simple solid body rotation with a nearly uniform axial velocity 
profile. The mean axial velocity and the swirl number at the inlet are 4.7 m s - l  and 0.7 
respectively. For computations the measured profiles of the axial and tangential velocity are 
prescribed as inlet boundary conditions. The radial velocity is specified as zero at the inlet. The 
values of the turbulent kinetic energy are derived from the measured profiles, assuming 
locally at the inlet that 

and 

The inlet conditions for the turbulence dissipation rate are obtained from 

E = c $14 ~ 3 ~ ~ / 0 - 0 1  R.  (32) 

Figure 2. The geometry (dimensions in millimetres) 
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lbl 

Figure 3. The finite element mesh: (a) whole domain; (b) inlet region (same plotting scale in the x- and r-directions) 

The following set of constants are employed in the present study:20 
C,=O-O9, C, = 1.43, C, = 1.92, C T ~ , ~ =  1.0, o ~ , ~ =  1.3, C,=O.22, 
C,=0.15, CASM,, ~ 2 . 5 ,  CA,M,2=0.55. 

k--E model results 

In this subsection the results obtained using the k--E model are presented. Vector plots of the 
velocity field (u- and u-velocities) are presented in Figure 4 for the non-swirling and swirling flows. 
Without swirl the flow separates near the inlet as it expands within the quarl and an external 
recirculation zone is formed. With swirl the velocities near the walls of the quarl become very high 
and the external recirculation zone disappears; instead, an internal recirculation zone is created. 
Radial profiles of axial and tangential velocities at several axial locations are presented in Figures 
5 and 6 respectively; the results are compared with experiment2' and finite difference predic- 
tions.22 The finite difference results22 were obtained using a 27 x 23 grid, the k--E model and hybrid 
differencing. This grid is coarser than the present finite element one (32 x 28) (Figure 2), but a 
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Figure 4. Velocity fields (k--E model): (a) without swirl; (b) with swirl (swirl number at inlet is 0.7) 

refinement of the finite difference grid up to 30 x 30 was reported4 to bring no remarkable 
improvement. Inspection of the experimental results (Figure 5 )  shows that the axial velocity has 
positive values about the centreline for the first three axial locations, i.e. the central part of the jet 
penetrates through the recirculation zone. This behaviour is not predicted by either method. 
However, comparison of the finite element and finite difference results for axial (Figure 5 )  and 
tangential (Figure 6)  velocities shows that the finite element results agree everywhere better with 
experiment. This can at least partly be attributed to the different amounts of false diffusion 
produced in the two models. The finite element results are apparently subject to less amounts of 
false diffusion, owing to the streamline upwinding (which is less diffusive than the hybrid 
differencing) and the alignment of the grid lines with the flow direction (more or less) within the 
quarl (Figures 2 4 ) .  A further aspect is the discretization of the inclined quarl wall (Figures 2 
and 3). By finite elements the inclined wall of the quarl can be perfectly discretized (Figure 3). In the 
finite difference the quarl wall was approximated as a ‘staircase’, which means a further 
source of error, as also indicated by discrepancies between finite difference predictions and 
experiment especially in the near-wall regions. 
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Figure 5. Radial profiles of the 
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axial velocity (k--E modeI) 

A comparison of upwind procedures 

Here the results are also obtained using the quadrature-upwind scheme” (QU), which is known 
to be more diffusive than the ‘discontinuity-capturing’ streamline-upwind/Petrov-Galerkin 
method6 (SUPGDC). In Figure 7, radial profiles of axial and tangential velocities are compared. 
The QU curves are clearly ‘smeared’ compared to the SUPGDC ones. This comparison confirms 
that the level of false diffusion introduced by the upwind scheme can substantially affect the results 
in such flow situations. 
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Figure 6. Radial profiles of the tangential velocity (k-E model) 

Algebraic stress model ( A S M )  results 

In this subsection the results obtained by the algebraic stress model (12), (25) are presented. 
Figure 8 illustrates the computed velocity field. A comparison with Figure 4 shows that the inner 
recirculation zone predicted by the algebraic stress model is larger compared to the k--E model 
results, where the ‘eye’ of the recirculation zone has moved further downstream and the negative 
velocities near the centreline have become smaller. In Figure 9, radial profiles of the axial velocity 
obtained by the algebraic stress model are compared with the k--E results and experiments. The 
algebraic stress model shows a much better agreement with experiment, where the centreline 
values, the gradients about the edges of the forward flow region and the peaks of the velocity 
profiles are all more accurately predicted. 

Radial profiles of the tangential velocity are presented in Figure 10. The algebraic stress model 
shows also here a clearly better agreement than the k--E model with experiment. 

The boundaries of the internal recirculation zone predicted by the algebraic stress and the k--E 
models are compared with experiment in Figure 1 1 .  The forward flow region within the internal 
recirculation zone could not be predicted by either method. However, the algebraic stress model 
gives a much better prediction of the outer envelope of the internal recirculation zone. 

A code using the k--E model must be modified at three places (apart from writing an additional 
subroutine for the computation of the algebraic Reynolds stresses (12)) in order to apply the 
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Figure 7. Comparison of the streamline and quadrature upwinding (k--E model) 

Figure 8. The velocity field (ASM) 
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Figure 9. Radial profiles of the axial velocity 

algebraic stress model. Here we performed a numerical experiment, where these modifications are 
introduced stepwise in separate runs, in order to see the effect of different levels of applying the 
algebraic stress model. In the first run (ASM 1) only the Navier-Stokes equations are modified by 
replacing the turbulent viscosity approximations ( 5 )  by the algebraic stresses (12) (using the 
corrective source term approach (25)). In the second run (ASM2), in addition to the first 
modification, the production term of k, (1 11, is modified by substituting the algebraic Reynolds 
stresses (12) instead of the turbulent viscosity approximations (5) into the expression (1 1). In the 
third run (ASM3), which represents the ‘full’ application of the algebraic stress model, the diffusion 
terms of the transport equations of k and E are also computed consistent with the algebraic stress 
model replacing (8) by (14) (here also the corrective source term approach (25) is used). 
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Figure 11. Boundaries of the internal recirculation zone 

Results are compared in Figure 12. Here profiles of axial and tangential velocity at only one 
axial location are considered, but the tendencies are similar everywhere. It can be seen from the 
figure that the largest deviation from the k--E model is obtained by only modifying the 
Navier-Stokes equations (ASM 1). The modification of the production term of the turbulent 
kinetic energy (ASM2) introduces a further improvement which is quantitatively smaller. The 
ASM2 and ASM3 curves are almost identical, implying that the additional modification of the 
diffusion terms of turbulence quantities practically does not affect the results. 
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Figure 12. Comparison of different levels of applying the ASM 
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Figure 13. Particle paths for three size classes (neglecting turbulence) 

Particle trajectories 

The computation of particle trajectories is based upon the converged flow field solution. The 
particle velocities at the injection point are assumed to be identical with the local fluid velocities. 
First the influence of particle size is investigated. Here the influence of turbulence is neglected by 
setting the fluctuational values of the velocities in (15) and (30) equal to zero. Three sizes are 
considered: d,=50, 10 and 5 pm. The size d,=50pm corresponds to the mean particle size 



714 A. C. BENIM 

in pulverized coal combustion. Particle densities are also set to a representative value for coal. 
The particles are injected at the inlet at r =  R/4, and 8=0. The projections of the particle paths 
on the 8=0 plane and the streamline originating from the particle injection point are plotted in 
Figure 13. The results show that only very small particles (d,=5 pm) are able to follow the 
fluid motion, whereas the trajectories deviate strongly from the streamline with increasing 
particle size. 

Turbulence effects are considered by computing the fluctuational velocities according to (18). 
Particle trajectories with turbulence effects (random walk) are presented in Figure 14 for two 
particles. 

A comparison of Figures 13 and 14 demonstrates that the particle paths computed with 
turbulence effects may differ considerably from those obtained neglecting the turbulence. In the 
lower illustration in Figure 14 the particle falls into the recirculation zone (Figures 8 and 11) 
because of the turbulent movements (instead of sliding smoothly along the separating streamline 
as predicted by neglecting the turbulence (Figure 13)) and makes many turns within the 
recirculation zone before it can escape from the rear part, which results in an approximately 10 
times larger residence time compared to the case neglecting turbulence. 

To investigate the effect of turbulence modelling on the prediction of turbulent particle 
dispersion, particle trajectories are computed using both the k--E model and the algebraic stress 

Figure 14. Particle paths with turbulence effects (random walk) 
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Figure 15. Pierce points of particles through several cross-sections 

model for 1000 particles injected at the same location. In Figure 15 the ‘pierce points’ of these 
particles through several cross-sections are plotted. The figure shows how the particle cloud 
rotates owing to the swirling gas motion and at the same time is dispersed by turbulent movements 
as it proceeds in the axial direction. Inspecting the figure, one can observe that the k--E model 
overestimates the turbulent particle dispersion in comparison to the algebraic stress model. 

CONCLUSIONS 

The application of the finite element method to confined turbulent swirling flow problems has 
been investigated. The analysis has been extended to predict particle motion in turbulent swirling 
flow fields. A convenient way of implementing the algebraic stress model in finite elements has 
been proposed. It has been shown that improved results can be obtained using less diffusive 
upwind schemes and the algebraic stress model instead of the k--E model. Nevertheless, some 
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features of the flow field (forward flow region within the internal recirculation zone) could still not 
be predicted satisfactorily. However, the prediction quality is expected to improve by employing 
the Reynolds stress transport model, which will be investigated in a future work. 
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APPENDIX: NOMENCLATURE 

Greek symbols 

A 
E 

constants in turbulence models 

particle diameter 
constant in turbulence wall model 
pressure shape functions 
turbulence kinetic energy 
velocity shape functions 
pressure 
radial co-ordinate 
pipe radius at the inlet 
particle Reynolds number 
time 
eddy lifetime 
particle relaxation time 
axial velocity 
velocity component parallel to wall 
shear velocity 
radial velocity 
tangential velocity 
axial co-ordinate 
distance from the wall 

incremental change 
dissipation rate of k 
underrelaxation factor for pressure 
azimuthal co-ordinate 
von Karman’s constant 
molecular viscosity 
turbulent viscosity 
density 
Prandtl number 
wall shear stress 
a field variable 



Subscripts 

e 
0 
P 
t 
W 

Superscripts 

( - )  
( Y  
( Y’ 
( )* 
( I +  

FE ANALYSIS O F  CONFINED TURBULENT SWIRLING FLOWS 

effective 
conditions at the beginning of a time step 
particle 
turbulent 
wall 

Reynolds-averaged value 
fluctuational value 
correction value 
uncorrected value 
quantity non-dimensionalized by means of p, t, and p 
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